170 research outputs found

    InDEX: Indonesian Idiom and Expression Dataset for Cloze Test

    Full text link
    We propose InDEX, an Indonesian Idiom and Expression dataset for cloze test. The dataset contains 10438 unique sentences for 289 idioms and expressions for which we generate 15 different types of distractors, resulting in a large cloze-style corpus. Many baseline models of cloze test reading comprehension apply BERT with random initialization to learn embedding representation. But idioms and fixed expressions are different such that the literal meaning of the phrases may or may not be consistent with their contextual meaning. Therefore, we explore different ways to combine static and contextual representations for a stronger baseline model. Experimentations show that combining definition and random initialization will better support cloze test model performance for idioms whether independently or mixed with fixed expressions. While for fixed expressions with no special meaning, static embedding with random initialization is sufficient for cloze test model.Comment: Accepted to "2022 International Conference on Asian Language Processing (IALP)

    Fracturing and thermal extraction optimization methods in enhanced geothermal systems

    Get PDF
    Fracture networks, fluid flow and heat extraction within fractures constitute pivotal aspects of enhanced geothermal system advancement. Conventional hydraulic fracturing in dry hot rock reservoirs typically requires high breakdown pressure and only produces a single major fracture morphology. Thus, it is imperative to explore better fracturing methods and consider more reasonable coupling mechanisms to improve the prediction efficiency. Cyclic fracturing using liquid nitrogen instead of water can generate more complex fracture networks and improve the fracturing performance. The simulation of fluid flow and heat transfer processes in the fracture network is crucial for an enhanced geothermal system, which requires a more comprehensive coupled thermo-hydro-mechanical-chemical model for matching, especially the characterization of coupling mechanism between the chemical and mechanical field. Based on the results of field engineering, laboratory experiments and numerical simulation, the optimum engineering scheme can be obtained by a multi-objective optimization and decision-making method. Furthermore, combining it with the deep-learning-based proxy model to achieve dynamic optimization with time is a meaningful future research direction.Document Type: PerspectiveCited as: Yang, R., Wang, Y., Song, G., Shi, Y. Fracturing and thermal extraction optimization methods in enhanced geothermal systems. Advances in Geo-Energy Research, 2023, 9(2): 136-140. https://doi.org/10.46690/ager.2023.08.0

    BlinkFlow: A Dataset to Push the Limits of Event-based Optical Flow Estimation

    Full text link
    Event cameras provide high temporal precision, low data rates, and high dynamic range visual perception, which are well-suited for optical flow estimation. While data-driven optical flow estimation has obtained great success in RGB cameras, its generalization performance is seriously hindered in event cameras mainly due to the limited and biased training data. In this paper, we present a novel simulator, BlinkSim, for the fast generation of large-scale data for event-based optical flow. BlinkSim consists of a configurable rendering engine and a flexible engine for event data simulation. By leveraging the wealth of current 3D assets, the rendering engine enables us to automatically build up thousands of scenes with different objects, textures, and motion patterns and render very high-frequency images for realistic event data simulation. Based on BlinkSim, we construct a large training dataset and evaluation benchmark BlinkFlow that contains sufficient, diversiform, and challenging event data with optical flow ground truth. Experiments show that BlinkFlow improves the generalization performance of state-of-the-art methods by more than 40% on average and up to 90%. Moreover, we further propose an Event optical Flow transFormer (E-FlowFormer) architecture. Powered by our BlinkFlow, E-FlowFormer outperforms the SOTA methods by up to 91% on MVSEC dataset and 14% on DSEC dataset and presents the best generalization performance

    Geometric Scaling of the Current-Phase Relation of Niobium Nano-Bridge Junctions

    Full text link
    The nano-bridge junction (NBJ) is a type of Josephson junction that is advantageous for the miniaturization of superconducting circuits. However, the current-phase relation (CPR) of the NBJ usually deviates from a sinusoidal function which has been explained by a simplified model with correlation only to its effective length. Here, we investigated both measured and calculated CPRs of niobium NBJs of a cuboidal shape with a three-dimensional bank structure. From a sine-wave to a saw-tooth-like form, we showed that deviated CPRs of NBJs can be described quantitatively by its skewness {\Delta}{\theta}. Furthermore, the measured dependency of {\Delta}{\theta} on the critical current {I_0} from 108 NBJs turned out to be consistent with the calculated ones derived from the change in geometric dimensions. It suggested that the CPRs of NBJs can be tuned by their geometric dimensions. In addition, the calculated scaling behavior of {\Delta}{\theta} versus {I_0} in three-dimensional space was provided for the future design of superconducting circuits of a high integration level by using niobium NBJs.Comment: 20 pages, 10 figure

    Challenges in QCD matter physics - The Compressed Baryonic Matter experiment at FAIR

    Full text link
    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (sqrt(s_NN) = 2.7 - 4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (mu_B > 500 MeV), effects of chiral symmetry, and the equation-of-state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2022, in the context of the worldwide efforts to explore high-density QCD matter.Comment: 15 pages, 11 figures. Published in European Physical Journal

    Insight-HXMT observations of Swift J0243.6+6124 during its 2017-2018 outburst

    Full text link
    The recently discovered neutron star transient Swift J0243.6+6124 has been monitored by {\it the Hard X-ray Modulation Telescope} ({\it Insight-\rm HXMT). Based on the obtained data, we investigate the broadband spectrum of the source throughout the outburst. We estimate the broadband flux of the source and search for possible cyclotron line in the broadband spectrum. No evidence of line-like features is, however, found up to 150 keV\rm 150~keV. In the absence of any cyclotron line in its energy spectrum, we estimate the magnetic field of the source based on the observed spin evolution of the neutron star by applying two accretion torque models. In both cases, we get consistent results with B1013 GB\rm \sim 10^{13}~G, D6 kpcD\rm \sim 6~kpc and peak luminosity of >1039 erg s1\rm >10^{39}~erg~s^{-1} which makes the source the first Galactic ultraluminous X-ray source hosting a neutron star.Comment: publishe
    corecore